\qquad Date \qquad

1. A person standing 100^{\prime} from the bottom of a cliff notices a tower on top of the cliff. The angle of elevation to the top of the cliff is 30° and the angle of elevation to the top of the tower is 58°. How tall is the tower?
$\tan 30^{\circ}=d / 100$ and $\tan 58^{\circ}=(d+x) / 100$
so $x=100 \tan 58^{\circ}-100 \tan 30^{\circ}=102.3^{\prime}$

2. Prove that the area of a triangle can be found by the formula: $A=\frac{1}{2}\left(\frac{\sin B \cdot \sin C}{\sin A}\right) \cdot a^{2}$
$A=1 / 2 a \cdot b \cdot \sin C$ and $a / \sin A=b / \sin B$, so $b=a \cdot \sin B / \sin A$ Substitute for b and get $A=1 / 2 a(a \cdot \sin B / \sin A) \cdot \sin C$ so $A=1 / 2(\sin B \cdot \sin C / \sin A) \cdot a^{2}$
3. A lamppost tilts towards the sun at an angle of 4° from the vertical and casts a 25^{\prime} shadow when the angle of elevation of the sun is 48°. What is the length of the lamppost?

$25 / \sin 38^{\circ}=x / \sin 48^{\circ}$
so $x=30.18^{\prime}$
4. Ptolemy's Theorem states that is ABCD is a cyclic quadrilateral (one that is inscribed in a circle), then $A B \cdot C D+A D \cdot B C=A C \cdot B D$. Consider the special case in which $B D$ is a diameter with length equal to 1.
A) State why $A B=\sin \alpha$ and that $A D=\cos \alpha$.
$\triangle A B D$ and $\triangle C B D$ are right angles so $\sin \alpha=A B / 1 \& \cos \alpha=A D / 1$.
B) Find BC and CD in terms of β.

$\operatorname{Sin} \beta=B C / 1$ and $\cos \beta=C D / 1$
C) Draw AC and, using geometry and the Law of Sines, show, without using the formula for the sine of the sum of two angles, that $A C=\sin (\alpha+\beta)$.
By law of sines, $A C / \sin (\alpha+\beta)=A D / \sin \angle D C A=A D / \sin \angle D B A=A D / \cos \angle B D A=\cos \alpha / \cos \alpha$.
So $A C / \sin (\alpha+\beta)=1 \rightarrow A C=\sin (\alpha+\beta)$
D) Use parts A), B), C), and Ptolemy's theorem to derive the formula for $\sin (\alpha+\beta)$. $A B \cdot C D+A D \cdot B C=A C \cdot B D \rightarrow \sin \alpha \cdot \cos \beta+\cos \alpha \cdot \sin \beta=\sin (\alpha+\beta)$.
5. Two stargazers are 25 miles apart at locations A and B. One night the stargazer at A looks toward B and sees a UFO at an angle of elevation of 40°. At the same time the stargazer at B looks toward A and sees a UFO at an angle of 65°.

A) How far is the UFO from each of the stargazers?
$25 / \sin 75^{\circ}=a / \sin 40^{\circ}=b / \sin 65^{\circ} \rightarrow b=23.46 \mathrm{mi}$ and $a=16.64 \mathrm{mi}$
B) How far off the ground is the UFO hovering?
$h=16.64 \sin 65^{\circ}=15.08$ miles
6. Two snowmobilers start from the same point. One heads $\mathrm{N} 75^{\circ} \mathrm{W}$ at a speed of 10 mph and the other heads $\mathrm{N} 35^{\circ} \mathrm{E}$ at a speed of 12 mph . After 2 hours they find that their radio transmissions are barely audible. Use this information to determine the range of their radios.
$2 0 \longdiv { d 1 0 \% } 2 4 d ^ { 2 } = 2 0 ^ { 2 } + 2 4 ^ { 2 } - 2 (2 0) (2 4) \operatorname { c o s } 1 1 0 ^ { \circ }$, so $d=36.12$ miles
7. Line \boldsymbol{I} bisects an angle formed by two lines $\boldsymbol{I}_{\boldsymbol{I}}$ and \boldsymbol{I}_{2}. If the slopes of these three lines are $\mathrm{m}, \mathrm{m}_{1}$, and m_{2} respectively,
A) Show that: $\frac{m_{1}-m}{1+m_{1} \cdot m}=\frac{m-m_{2}}{1+m \cdot m_{2}} t \begin{gathered}\tan (\angle 1)=\tan (1-I) \text { and } \tan (\angle 2)=\tan \left(I-I_{2}\right) \\ m_{1}-m \quad m-m\end{gathered}$ If $\angle 1 \cong \angle 2, \tan (\angle 1)=\tan (\angle 2)$. So $=\tan \left(l_{1}-I\right)=\tan \left(1-I_{2}\right) \rightarrow \frac{m_{1}-m}{1+m_{1} \times m}=\frac{m-m_{2}}{1+m \times m_{2}}$
B) If \boldsymbol{I}_{1} and \boldsymbol{I}_{2} have equations of $\mathrm{y}=2 \mathrm{x}$ and $\mathrm{y}=\mathrm{x}$, find an equation of \boldsymbol{I}.
$\frac{m_{1}-m}{1+m_{1} \times m}=\frac{m-m_{2}}{1+m \times m_{2}} \Rightarrow \frac{2-m}{1+2 m}=\frac{m-1}{1+m} \Rightarrow 2+m-m^{2}=2 m^{2}-m-1 \Rightarrow m=\frac{1 \pm \sqrt{10}}{3}$
so equations are $y=\left(\frac{1 \pm \sqrt{10}}{3}\right) x$
8. A pilot programs his plane to travel $\mathrm{S} 36^{\circ} \mathrm{E}$ at 450 mph and then takes a 3 hour nap. Unfortunately, a 30 mph wind blowing due north affects the path of the plane for the entire trip. When the pilot wakes up, how far from the airport has he actually flown? What is his bearing from the airport?
$d^{2}=1350^{2}+90^{2}-2(1350)(90) \cos 36^{\circ}$ so $d=1278$ miles $1278 / \sin \left(36^{\circ}\right)=90 / \sin k \rightarrow k=2.372^{\circ}$, so the bearing is $S 38.372^{\circ} \mathrm{E}$.

9. A parallelogram has two sides of lengths 6 and 9 . The included angle between the sides is 68°.
A) How long is the longer diagonal? $d^{2}=6^{2}+9^{2}-2(6)(9) \cos 68^{\circ} \rightarrow d=8.749$
B) How long is the shorter diagonal? $d^{2}=6^{2}+9^{2}-2(6)(9) \cos 112^{\circ} \rightarrow d=12.55$
C) What is the angle between the diagonals? Diagonals bisect each other, so $6^{2}=4.374^{2}+6.274^{2}-2(4.374)(6.274) \cos \theta \rightarrow \theta=65.80^{\circ}$ or 114.20°
10. Two forces are acting on an object. If the magnitude of one force is 500 N and the magnitude of the second force is 600 N and if the angle between the forces is 28°, find the magnitude of the resultant force and the angle it makes with the 500 N force.

11. The diagram to the right shows a unit circle with $\mathrm{m} \angle \mathrm{BOC}=\theta$.
A) Explain why the measure of $\angle B A O=\theta / 2$.

The measure of an inscribed angle is half the measure of the intercepted arc.
B) Explain why $\tan (\theta / 2)=\sin \theta /(1+\cos \theta)$.

Look at $\triangle A B C$. By SOHCAHTOA, $\tan A=B C / A C \rightarrow \tan (\theta / 2)=\sin \theta /(1+\cos \theta)$
12. Arthur's car broke down along a long straight road and he decided to take a shortcut through the woods. He sets off at an angle of 40° with the road and walks about 1000'. After deciding he is lost, Arthur turns and after walking 800', he finds the road. How far is he from his car?

13. Point B is 20 miles $\mathrm{N} 28^{\circ} \mathrm{E}$ of point A , and point C is 53 miles at $\mathrm{S} 51^{\circ} \mathrm{E}$ of B . How far from A is C and what is the bearing from A to C ?

14. Use the figure to the right.
A) Prove that the area of the rhombus is $\mathrm{a}^{2} \sin 2 \theta$.

Draw other diagonal. In one of those triangles, $A=1 / 2 a \cdot a \cdot \sin (2 \theta)$.
Since there are $2 \Delta s, A=2(1 / 2) a^{2} \sin (2 \theta)=a^{2} \sin (2 \theta)$
B) Prove (using a property of the diagonals) that the area of the rhombus is $2 a^{2} \sin \theta \cdot \cos \theta$.
Both diagonals make $4 \cong$ right $\Delta \mathrm{s}$. The base of one is a $\cdot \cos \theta$ and its height is a•sin θ. So total area is $4(1 / 2)$ acos $\theta \cdot a \sin \theta=2 a^{2} \sin \theta \cdot \cos \theta$
C) What formula can be deduced from the relationship between A and B ? $a^{2} \sin (2 \theta)=2 a^{2}(\sin \theta)(\cos \theta) \rightarrow \sin (2 \theta)=2 \sin \theta \cdot \cos \theta$
15. The lengths of the sides of a triangle are consecutive integers $n, n+1$, and $n+2$. Also, the measure of the largest angle is twice the measure of the smallest angle θ.
A) Use the Law of Sines to show that $\cos \theta=(n+2) /(2 n) . n / \sin \theta=(n+2) / \sin (2 \theta) \rightarrow$ $n / \sin \theta=(n+2) /(2 \sin \theta \cdot \cos \theta) \rightarrow n=(n+2) / 2 \cos \theta$, so $\cos \theta=(n+2) /(2 n)$.
B) Use the Law of Cosines to show that $\cos \theta=(n+5) /(2 n+4)$.
$n^{2}=(n+1)^{2}+(n+2)^{2}-2(n+1)(n+2) \cos \theta \rightarrow n^{2}-n^{2}-4 n-4-n^{2}-2 n-1=-2(n+1)(n+2) \cos \theta \rightarrow$ $-n^{2}-6 n-5=-2(n+1)(n+2) \cos \theta \rightarrow-(n+5)(n+1) /-2(n+1)(n+2)=\cos \theta=(n+5) /(2 n+4)$
C) Use A) and B) to find n. $(n+2) /(2 n)=(n+5) /(2 n+4) \rightarrow(n+2) /(n)=(n+5) /(n+2) \rightarrow$ $n=4$
16. Given that $A B=A C=1, m \angle A=36^{\circ}$ and $\overrightarrow{B D}$ bisects $\angle B$.
A) Prove that $\triangle A B C \sim \triangle B C D$. Since $\triangle A B C$ is isosceles, $m \angle C=m \angle A B C=72^{\circ}$. Since $B D$ bisects $\angle A B C, m \angle C B D=36^{\circ}$ since the triangles share $\angle C$, by $A A \sim, \triangle A B C \sim \triangle B D C$.
And since $\triangle B C D$ is isosceles, $\triangle A B C \sim \triangle B C D$.
B) Use similar triangles to show that $\frac{x}{1-x}=\frac{1}{x}$

Since $\triangle B C D$ is isosceles, $B D=x$. But since $m \angle A B D=36^{\circ}, \triangle A B D$ is also isosceles, so $A D=$ x. Therefore $C D=1-x$. So $\frac{B C}{C D}=\frac{A C}{B C} \Rightarrow \frac{x}{1-x}=\frac{1}{x}$
C) Show that $\mathrm{x}=\frac{\sqrt{5}-1 \quad \text { Using the above equation, cross multiply to get } x^{2}=1-x}{} \quad \begin{aligned} & \text { I }\end{aligned}$

$$
-1+\sqrt{1+4} \quad 2 \sqrt{5}-1 \text { Solve } x^{2}+x-1=0 \text { using the quadratic formula and get: }
$$

$$
x=\frac{-1+\sqrt{1+4}}{2}=\frac{\sqrt{5}-1}{2}
$$

D) Draw the bisector of $\angle \mathrm{A}$ and show that $\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}=\cos 72^{\circ}$ Let the foot be called F. Since $\angle A$ was bisected, $m \angle B A F=36^{\circ}$ and since, in an isosceles triangle the angle bisector is also the altitude, $m \angle A F B=90^{\circ} . \operatorname{Sin} 18^{\circ}=o p p / h y p=(x / 2) / 1=\frac{\sqrt{5}-1}{2} \cdot \frac{1}{2}=\frac{\sqrt{5}-1}{4}$
And by the cofunction property, $\sin 18^{\circ}=\cos 72^{\circ}$.
E) Draw the perpendicular from B to $A C$ and show that $\cos 36^{\circ}=\frac{\sqrt{5}+1}{4}=\sin 54^{\circ}$. Let the foot be K. $\triangle B K A$ is right, so $\cos 36^{\circ}=A K / A B=(x+1 / 2(1-x))=$ $1 / 2+1 / 2 x=\frac{1}{2}+\frac{\sqrt{5}-1}{4}=\frac{2}{4}+\frac{\sqrt{5}-1}{4}=\frac{\sqrt{5}+1}{4}=\cos 36^{\circ}=\sin 54^{\circ}$.
F) Explain how to use this information to find the exact value of $\cos 18^{\circ}=\sin 72^{\circ}$. We know sin 18°, so use the fact that $\cos ^{2} 18^{\circ}+\sin ^{2} 18^{\circ}=1$ and solve for $\cos 18^{\circ}=\sin 72$
17. Let circle O be the circumcircle of acute $\triangle A B C$ and let $\overline{B P}$ be the diameter through B.
A) Show that $\angle \mathrm{BPA} \cong \angle \mathrm{BCA}$. Since they are both inscribed angles that intercept arc BA, they must be congruent.
$B)$ Show that $A B / B P=\sin B P A$. Since $\angle B P A$ is inscribed in a semicircle, it is a right angle so by SOHCAHTOA, sin $\angle B P A=A B / B P$.

C) Use parts A) and B) to show that $c / \sin B C A=$ diameter $=a / \sin C A B=b / \sin A B C$.
(Name this formula.) By substitution, $A B / B P=\sin \angle B C A$ so diameter $=A B / \sin C \rightarrow$ diameter $=c / \sin C$. Similarly, $\angle C A B \cong \angle C P B$, so $\sin \angle C P B=\sin \angle C A B=B C / P B$ So diameter $=a / \sin A$. Drawing diameter $A K$ could reveal $\angle A B C \cong \angle A K C$ and $A K=$ $A C / \sin \angle A K C=b / \sin B$. This is the law of sines. ©
18. Use the results of two previous problems to prove that the ratio of the area of $\triangle A B C$ to the area of its circumcircle is $2 \cdot \sin \mathrm{~A} \cdot \sin \mathrm{~B} \cdot \sin \mathrm{C} / \pi$. By \#2, the area of a Δ is
$1 / 2(\sin B \cdot \sin C / \sin A) \cdot a^{2}$. The area of the circle is $\pi r^{2}=\pi((1 / 2) a / \sin A)^{2}=\pi a^{2} / 4 \sin ^{2} A$ so the Ratio of the areas is $\frac{\left(\frac{a^{2} \cdot \sin B \cdot \sin C}{2 \cdot \sin A}\right)}{\left(\frac{\pi \cdot a^{2}}{4 \sin ^{2} A}\right)}=\left(\frac{a^{2} \cdot \sin B \cdot \sin C}{2 \cdot \sin A}\right) \cdot\left(\frac{4 \sin ^{2} A}{\pi \cdot a^{2}}\right)=\frac{2 \sin A \cdot \sin B \cdot \sin C}{\pi}$
19. Without using a calculator, find the exact lengths of the diagonals of the quadrilateral to the right. Use the fact that opposite angles in a cyclic quadrilateral are supplementary.
Let $P R=x$. By the law of cosines, $x^{2}=7^{2}+4^{2}-2 \cdot 7 \cdot 4 \cdot \cos Q .5$ Also, by the law of cosines, $x^{2}=5^{2}+6^{2}-2 \cdot 5 \cdot 6 \cdot \cos \left(180^{\circ}-Q\right)=$ so, $x^{2}=5^{2}+6^{2}+2 \cdot 5 \cdot 6 \cdot \cos (Q)=7^{2}+4^{2}-2 \cdot 7 \cdot 4 \cdot \cos Q$.

$\cos Q(2 \cdot 5 \cdot 6+2 \cdot 7 \cdot 4)=7^{2}+4^{2}-5^{2}-6^{2} \operatorname{soc} \cos Q=\frac{\left(7^{2}-6^{2}\right)+\left(4^{2}-5^{2}\right)}{2(5 \cdot 6+7 \cdot 4)}=\frac{13-9}{2(58)}=\frac{1}{29}$
so $x^{2}=5^{2}+6^{2}+2 \cdot 5 \cdot 6 \cdot 1 / 29=61+60 / 29=632 / 29=1829 / 29$. SO $x=\sqrt{\left(\frac{1829}{29}\right)}$ Similarly,
If $Q S=y, y^{2}=7^{2}+5^{2}-2 \cdot 7 \cdot 5 \cdot \cos P=6^{2}+4^{2}+2 \cdot 6 \cdot 4 \cdot \cos P$, so $\cos P=$ $\frac{\left(7^{2}-6^{2}\right)+\left(5^{2}-4^{2}\right)}{2(4 \cdot 6+7 \cdot 5)}=\frac{13+9}{2(59)}=\frac{11}{59}$ so $x^{2}=6^{2}+4^{2}+2 \cdot 6 \cdot 4 \cdot 11 / 59=52+528 / 59=3596 / 59$
SO $x=\sqrt{\left(\frac{3596}{59}\right)}$ NOTE: We can check with Ptolemy's theorem: Does $7 \cdot 6+4 \cdot 5$
$=\sqrt{\left(\frac{1829}{29}\right)} \sqrt{\left(\frac{3596}{59}\right)}=\sqrt{3844}=62$. Yes it does!! (I checked WITH the calculator.)
20. Use the Law of Cosines to find a relationship between the sides of any triangle $A B C, a$ Cevian segment \mathbf{d} drawn to \mathbf{c}, and the two segments created by the Cevian \mathbf{m} and \mathbf{n}.
A) Using the Law of Cosines,
find an expression for \mathbf{a} in terms of \mathbf{m} and \mathbf{d}.
Solve for $\cos \alpha \quad a^{2}=m^{2}+d^{2}-2 \cdot m \cdot d \cdot \cos \alpha$
So $\cos \alpha=\frac{a^{2}-m^{2}-d^{2}}{-2 m d}$
B) Using the Law of Cosines,
find an expression for \mathbf{b} in terms of \mathbf{n} and \mathbf{d}.
Solve for $\cos \beta . \quad b^{2}=n^{2}+d^{2}-2 \cdot n \cdot d \cdot \cos \beta$

So $\cos \beta=\frac{b^{2}-n^{2}-d^{2}}{-2 n d}$
C) Using the relationship between α and β, combine these two equations. (You've done this before...)
Since $\cos \alpha=-\cos \beta, \cos \alpha=\frac{\boldsymbol{a}^{2}-\boldsymbol{m}^{2}-\boldsymbol{d}^{2}}{-2 m \boldsymbol{d}}=\frac{\boldsymbol{b}^{2}-\boldsymbol{n}^{2}-\boldsymbol{d}^{2}}{2 n \boldsymbol{n}}$ so $\frac{\boldsymbol{a}^{2}-\boldsymbol{m}^{2}-\boldsymbol{d}^{2}}{-\boldsymbol{m}}=\frac{\boldsymbol{b}^{2}-\boldsymbol{n}^{2}-\boldsymbol{d}^{2}}{\boldsymbol{n}}$
D) Prove your result is equal to Stewart's theorem: $\mathbf{a}^{\mathbf{2}} \mathbf{n}+\mathbf{b}^{\mathbf{2}} \mathbf{m}=\mathbf{d}^{2} \mathbf{c}+\mathbf{m n c}$

So $a^{2} n-m^{2} n-d^{2} n=-b^{2} m+m n^{2}+d m^{2} \rightarrow a^{2} n+b^{2} m=d^{2}(n+m)+m n(n+m)$, but since $m+n=c, a^{2} \boldsymbol{n}+\boldsymbol{b}^{2} \boldsymbol{m}=\boldsymbol{d}^{2} \boldsymbol{c}+\boldsymbol{m} n c$
21. Solve for x :
A)

$$
\begin{aligned}
& \left(9^{\tan x}\right)^{\cos x}=\frac{1}{3} \\
& \left(3^{2}\right)^{\frac{\sin x}{\cos x} \cdot \frac{\cos x}{1}=3^{-1}} \\
& 2 \sin x=-1 \\
& x=\left\{\begin{array}{l}
\frac{\sin x=-1 / 2}{6}+2 \pi k \\
\frac{11 \pi}{6}+2 \pi k
\end{array}\right\}
\end{aligned}
$$

B)

$$
\begin{gathered}
\frac{16^{\sin x}}{2^{\cos ^{2} x}}=2 \cdot 2^{\sin ^{2} x} \\
\frac{2^{4 \sin x}}{2^{\cos ^{2} x}}=2^{1+\sin ^{2} x} \\
4 \sin x-\left(1-\sin ^{2} x\right)=1+\sin ^{2} x \\
4 \sin x-1=1 \\
4 \sin x=2 \\
\sin x=1 / 2 \\
x=\left\{\begin{array}{c}
\frac{\pi}{6}+2 \pi k \\
\frac{5 \pi}{6}+2 \pi k
\end{array}\right\}
\end{gathered}
$$

