Tuesday's Parametric Review:

What could be on the parametric retest/final exam?
Possible values of t (so possible values of x and y)
Eliminating a parameter
Writing parametric equations of lines, conics and non-functions
Finding intercepts, asymptotes, distances, slopes, maximums, minimums, intersections, transformations
Applications like projectile motion and circular motion.

Example question:

A ball is launched with initial velocity of 75^{\prime} at a 42° angle from a height of 4^{\prime}.

1) How long will the ball be in the air?
2) What height will it reach?
3) How far will it travel before hitting the ground?
4) If there is a monkey in a tree 80^{\prime} from where the ball is being launched at a height of 20^{\prime}, how close will the ball come to hitting the monkey?

Answers:
Parametric equations of the ball are:
$x=\left(75 \cos 42^{\circ}\right) t \quad$ and $y=\left(75 \sin 42^{\circ}\right) t-16 t^{2}+4$

1. The ball will be in the air until it touches ground and that is a height or y concept, so we will set y $=0$ and solve for t. If $\left(75 \sin 42^{\circ}\right) t-16 t^{2}+4=0$, then, by using QUADFORM, $t=3.214 \ldots$ and -0.7778 . Clearly the negative number is impossible, so $t=3.214$ seconds.
2. The maximum height is a y value, so we need the maximum value of the $y=\left(75 \sin 42^{\circ}\right) t-16 t^{2}+4$ which can be found when $t=-b /(2 a)=-75 \sin 42^{\circ} /(-32)=1.568 \ldots$. and y, when evaluated $a t 1.568 \ldots$, is 43.35 feet.
3. Find the x value at $t=3.214$ seconds. $d=179.15$ feet
4. $d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}=\sqrt{\left(75 \cos \left(42^{\circ}\right) t-80\right)^{2}+\left(75 \sin \left(42^{\circ}\right) t-16 t^{2}+4-20\right)^{2}}$ Graph this as a function of x and find the minimum, which occurs at $(1.394,22.98)$ which means at $t=1.394$ seconds, the ball will be as close to the monkey as it will ever get and that distance is 22.98 feet apart.
