Name

1. A cricket ball is hit with a velocity of 12 m/s at an angle with the horizontal whose tangent is 4/3. Find:

- a) The greatest height reached.
- b) The time of flight.
- c) The horizontal distance traveled.

2. A ball is projected so that its horizontal range is 45meters and it passes through a point 22 meters horizontally from and 11 meters vertically above the point of projection. Find the angle of projection and the speed of projection.

3. A ball thrown horizontally with speed V from a point H meters above the ground lands at a horizontal distance D meters from the point of release. Find:

- a) V if D = 3 and H = 1.
- b) H if V = 10 and D = 20.

4. A golfer hits a ball from a point on a level fairway and 2 seconds later it strikes the fairway 50 m away. Find:

- a) The initial velocity and angle of projection.
- b) The maximum height of the ball above the fairway.

5. A batsman hits a cricket ball "off his toes" towards a fieldsman who is 65 m away. The ball reaches a maximum height of 4.9 m and the horizontal component of its velocity is 28 m/s. Find the constant speed with which the fieldsman must run forward, starting at the instant the ball is hit, in order to catch the ball at a height of 1.3 m above the ground.

6. A football kicked at 16 m/s, just passes over a crossbar 4 m high and 16 m away. Show that, if θ if the angle of projection, 4.9tan² θ – 16tan θ + 8.9 = 0.

Worksheet Solutions:

- 1. Since the cricket ball is an object in flight, x(t) = 12(3/5)t and $y(t) = 12(4/5)t 4.9t^2$
 - A) Use the y(t) equation and $t_{max} = -b/(2a) = -12(4/5)/(2(-4.9) \approx .9796$ seconds, so $Y(.9796) \approx 4.702$ meters.
 - B) Find t when y(t) = 0, so factoring $y(t) = t(12(4/5) 4.9t) \Rightarrow t \approx 1.959$ seconds.
 - C) Find x when t \approx 1.959 seconds \Rightarrow x \approx 14.106 meters

2. You know that $x = v_0 \cos \theta \cdot t$ and that $y = v_0 \sin \theta \cdot t - 4.9t^2$.

A) This graph passes through the point (45, 0), so substituting that point in, we get that $45 = v_0 \cos \theta \cdot t$ and $v_0 \sin \theta \cdot t = 4.9t^2 \Rightarrow v_0 \sin \theta = 4.9t \Rightarrow t = v_0 \sin \theta/4.9$. Substituting, we get $45 = v_0 \cos \theta \cdot v_0 \sin \theta/4.9 \Rightarrow$

$$v_0{}^2 = 45 \cdot 4.9 / (\cos \theta \cdot \sin \theta) \implies v_o = \sqrt{\left(45 \cdot 4.9\right) / \left(\cos \theta \cdot \sin \theta\right)} \,.$$

B) The graph also passes through (22, 11) at a different time, so if $22 = v_0 \cos \theta \cdot t$, then $t = \frac{22}{\cos \theta} \sqrt{\frac{\cos \theta \cdot \sin \theta}{45 \cdot 4.9}}$. Meanwhile y yields: $11 = \sqrt{\frac{(45 \cdot 4.9)}{(\cos \theta \cdot \sin \theta)}} \cdot \sin \theta \cdot \frac{22}{\cos \theta} \sqrt{\frac{\cos \theta \cdot \sin \theta}{45 \cdot 4.9}} - 4.9 \cdot \left(\frac{22}{\cos \theta} \sqrt{\frac{\cos \theta \cdot \sin \theta}{45 \cdot 4.9}}\right)^2 = 11 = 22 \tan \theta - 4.9 \cdot \left(\frac{22^2}{\cos^2 \theta} \frac{\cos \theta \cdot \sin \theta}{45 \cdot 4.9}\right)$. Simplifying further, we get $11 = 22 \tan \theta - (22^2/45) \tan \theta$. So $\tan \theta = 12 \tan \theta - (22^2/45) \tan \theta$.

.9783, so θ = 44.37°, leaving v_o = 21.00 m/sec. Therefore parametric equations of this motion are: x = 21·t·cos 44.37° and y = 21·t· sin 44.37° - 4.9t²

3. x = Vt and $y = -4.9t^2 + H$ so

a) If D = 3 and H = 1, $4.9t^2 = 1 \Rightarrow t = 0.45176$ seconds, so 3 = V*0.45176 \Rightarrow V = 6.641 m/sec.

b) If V = 10 and D = 20, 20 = 10t \Rightarrow t = 2, H = 4.9(2)² = 19.6 meters.

4. a) $50 = v_0 \cos \theta \cdot 2 \Rightarrow v_0 \cos \theta = 25 \Rightarrow v_0 = 25/\cos \theta$. And $0 = v_0 \sin \theta \cdot 2 - 4.9 \cdot 2^2 \Rightarrow (25/\cos \theta) \sin \theta \cdot 2 = 4.9 \cdot 4$, so $\tan \theta = 9.8/25$ so $\theta = 21.41^\circ$ and $v_0 = 25/\cos \theta = 26.85$ m/sec.

b) Since y = 0 at t = 0 and t = 2, by symmetry, the maximum height occurs at t = 1, so y(1) = 4.9 meters.

5. We know that $x = 28 \cdot t$ and that when $t = v_0 \sin t/9.8$, y = 4.9, so let $v_0 \sin \theta = k$ and we see that $v_0 \sin \theta \cdot v_0 \sin t/9.8 - 4.9 (v_0 \sin t/9.8)^2 = 9.8 \Rightarrow k^2/9.8 - 4.9k^2/9.8^2 = 4.9 \Rightarrow k = 9.8$ (seriously, try it!), so $x = 28 \cdot t$ and $y = 9.8t - 4.9t^2$. If y = 1.3, then $-4.9t^2 + 9.8t - 1.3 = 0 \Rightarrow t = 0.14286$ or t = 1.8571 seconds (and I think this time we need the larger value). So x(1.8571) = 52 and the fieldsman's speed must be(65 - 52)/1.8571 = 7 m/s.

6. Parametric equations will be x = 16tcos θ and y = 16tsin θ – 4.9t². If 16tcos θ = 16 when 4 = 16tsin θ – 4.9t², t = 1/cos θ and 4 = 16sin θ /cos θ – 4.9(sec² θ) \Rightarrow 4 = 16tan θ – 4.9(1 + tan² θ) \Rightarrow 4 = 16tan θ – 4.9tan² θ \Rightarrow

 $4.9 \tan^2 \theta - 16 \tan \theta + 8.9 = 0$