\qquad

1. A cricket ball is hit with a velocity of $12 \mathrm{~m} / \mathrm{s}$ at an angle with the horizontal whose tangent is $4 / 3$. Find:
a) The greatest height reached.
b) The time of flight.
c) The horizontal distance traveled.
2. A ball is projected so that its horizontal range is 45 meters and it passes through a point 22 meters horizontally from and 11 meters vertically above the point of projection. Find the angle of projection and the speed of projection.
3. A ball thrown horizontally with speed V from a point H meters above the ground lands at a horizontal distance D meters from the point of release. Find:
a) V if $\mathrm{D}=3$ and $\mathrm{H}=1$.
b) H if $\mathrm{V}=10$ and $\mathrm{D}=20$.
4. A golfer hits a ball from a point on a level fairway and 2 seconds later it strikes the fairway 50 m away. Find:
a) The initial velocity and angle of projection.
b) The maximum height of the ball above the fairway.
5. A batsman hits a cricket ball "off his toes" towards a fieldsman who is 65 m away. The ball reaches a maximum height of 4.9 m and the horizontal component of its velocity is $28 \mathrm{~m} / \mathrm{s}$. Find the constant speed with which the fieldsman must run forward, starting at the instant the ball is hit, in order to catch the ball at a height of 1.3 m above the ground.
6. A football kicked at $16 \mathrm{~m} / \mathrm{s}$, just passes over a crossbar 4 m high and 16 m away. Show that, if θ if the angle of projection, $4.9 \tan ^{2} \theta-16 \tan \theta+8.9=0$.

Worksheet Solutions:

1. Since the cricket ball is an object in flight, $x(t)=12(3 / 5) t$ and $y(t)=12(4 / 5) t-4.9 t^{2}$
A) Use the $\mathrm{y}(\mathrm{t})$ equation and $\mathrm{t}_{\max }=-\mathrm{b} /(2 \mathrm{a})=-12(4 / 5) /(2(-4.9) \approx .9796$ seconds, so

$$
Y(.9796) \approx 4.702 \text { meters. }
$$

B) Find t when $y(t)=0$, so factoring $y(t)=t(12(4 / 5)-4.9 t) \Rightarrow t \approx 1.959$ seconds.
C) Find x when $t \approx 1.959$ seconds $\Rightarrow x \approx 14.106$ meters
2. You know that $x=v_{0} \cos \theta \cdot t$ and that $y=v_{0} \sin \theta \cdot t-4.9 t^{2}$.
A) This graph passes through the point (45,0), so substituting that point in, we get that $45=v_{0} \cos \theta \cdot t$ and $v_{0} \sin \theta \cdot t$ $=4.9 \mathrm{t}^{2} \Rightarrow \mathrm{v}_{0} \sin \theta=4.9 \mathrm{t} \Rightarrow \mathrm{t}=\mathrm{v}_{0} \sin \theta / 4.9$. Substituting, we get $45=\mathrm{v}_{0} \cos \theta \cdot \mathrm{v}_{0} \sin \theta / 4.9 \Rightarrow$ $v_{0}{ }^{2}=45 \cdot 4.9 /(\cos \theta \cdot \sin \theta) \Rightarrow v_{o}=\sqrt{(45 \cdot 4.9) /(\cos \theta \cdot \sin \theta)}$.
B) The graph also passes through $(22,11)$ at a different time, so if $22=v_{0} \cos \theta \cdot t$, then $t=\frac{22}{\cos \theta} \sqrt{\frac{\cos \theta \cdot \sin \theta}{45 \cdot 4.9}}$.

Meanwhile y yields: $11=\sqrt{\frac{(45 \cdot 4.9)}{(\cos \theta \cdot \sin \theta)}} \cdot \sin \theta \cdot \frac{22}{\cos \theta} \sqrt{\frac{\cos \theta \cdot \sin \theta}{45 \cdot 4.9}}-4.9 \cdot\left(\frac{22}{\cos \theta} \sqrt{\frac{\cos \theta \cdot \sin \theta}{45 \cdot 4.9}}\right)^{2}=$ $11=.22 \tan \theta-4.9 \cdot\left(\frac{22^{2}}{\cos ^{2} \theta} \frac{\cos \theta \cdot \sin \theta}{45 \cdot 4.9}\right)$. Simplifying further, we get $11=22 \tan \theta-\left(22^{2} / 45\right) \tan \theta$. So $\tan \theta=$.9783 , so $\theta=44.37^{\circ}$, leaving $\mathrm{v}_{\mathrm{o}}=21.00 \mathrm{~m} / \mathrm{sec}$. Therefore parametric equations of this motion are: $x=21 \cdot t \cdot \cos 44.370$ and $y=21 \cdot t \cdot \sin 44.370-4.9 t^{2}$
3. $x=V t$ and $y=-4.9 t^{2}+H$ so
a) If $D=3$ and $H=1,4.9 t^{2}=1 \Rightarrow t=0.45176$ seconds, so $3=V^{*} 0.45176 \Rightarrow V=6.641 \mathrm{~m} / \mathrm{sec}$.
b) If $\mathrm{V}=10$ and $\mathrm{D}=20,20=10 \mathrm{t} \Rightarrow \mathrm{t}=2, \mathrm{H}=4.9(2)^{2}=19.6$ meters.
4. a) $50=v_{0} \cos \theta \cdot 2 \Rightarrow v_{0} \cos \theta=25 \Rightarrow \Rightarrow v_{0}=25 / \cos \theta$. And $0=v_{0} \sin \theta \cdot 2-4.9 \cdot 2^{2} \Rightarrow(25 / \cos \theta) \sin \theta \cdot 2=4.9 \cdot 4$, so $\tan \theta=9.8 / 25$ so $\theta=21.41^{\circ}$ and $v_{0}=25 / \cos \theta=26.85 \mathrm{~m} / \mathrm{sec}$.
b) Since $y=0$ at $t=0$ and $t=2$, by symmetry, the maximum height occurs at $t=1$, $\operatorname{so} y(1)=4.9$ meters.
5. We know that $\mathrm{x}=28 \cdot \mathrm{t}$ and that when $\mathrm{t}=\mathrm{v}_{0} \sin \mathrm{t} / 9.8, \mathrm{y}=4.9$, so let $\mathrm{v}_{0} \sin \theta=\mathrm{k}$ and we see that $v_{0} \sin \theta \cdot v_{0} \sin t / 9.8-4.9\left(v_{0} \sin t / 9.8\right)^{2}=9.8 \Rightarrow k^{2} / 9.8-4.9 k^{2} / 9.8^{2}=4.9 \Rightarrow k=9.8$ (seriously, try it!), so $x=\mathbf{2 8 . t}$ and $\mathbf{y}=9.8 \mathbf{t}-4.9 t^{2}$. If $y=1.3$, then $-4.9 t^{2}+9.8 t-1.3=0 \Rightarrow t=0.14286$ or $t=1.8571$ seconds (and I think this time we need the larger value). So $x(1.8571)=52$ and the fieldsman's speed must be($65-52$)/1.8571 $=7 \mathrm{~m} / \mathrm{s}$.
6. Parametric equations will be $x=16 \operatorname{tcos} \theta$ and $y=16 t \sin \theta-4.9 t^{2}$. If $16 t \cos \theta=16$ when $4=16 \operatorname{tsin} \theta-4.9 t^{2}$, $\mathrm{t}=1 / \cos \theta$ and $4=16 \sin \theta / \cos \theta-4.9\left(\sec ^{2} \theta\right) \Rightarrow 4=16 \tan \theta-4.9\left(1+\tan ^{2} \theta\right) \Rightarrow 4=16 \tan \theta-4.9-4.9 \tan ^{2} \theta \Rightarrow$

$$
4.9 \tan ^{2} \theta-16 \tan \theta+8.9=0
$$

