Inverses of Trig Functions
I. On the graph to the right, sketch a fairly accurate graph of $y=\sin x$.

1. Describe the relationship between a graph and its inverse.
2. Describe the relationship between specific points on a graph and points on its inverse.

Name \qquad

3. Use this information to write at least 6 points on a graph of the inverse of your sine function.
4. Plot the points from problem \#3 and connect them to form a smooth inverse graph.
5. Will this inverse be a function? Why or why not?

One convention is to call this relation $y=\arcsin x$. It's domain is $-1 \leq x \leq 1$ and its range is all reals. The relation $y=\arcsin x$ has many values when $x=\frac{1}{2}$. List at least three .
6. If you wanted to create an inverse function for the sine of x, you would have to limit the range of the arcsine relation without limiting the domain. How would you limit the range of the arcsine relation to create a function?
\qquad $\leq y \leq$ \qquad
7. Graph $f(x)=\sin (x)$ and $f(x)=\sin ^{-1}(x)$ on your calculator with a Zoom Decimal window. Does $y=\sin ^{-1}(x)$ appear to have the same range as your limits?

Check by finding $\sin ^{-1}(-1)$ \qquad and $\sin ^{-1}(1)$. \qquad and then, in another color, graph $y=\sin ^{-1}(x)$ on the graph above. Although our text does not do this, my convention will be to use $f(x)=\operatorname{Sin}^{-1}(x)$ or $f(x)=\operatorname{Arcsin}(x)$ to denote the function.
II. 1. Graph $y=\cos x$ to the right.
2. Graph the inverse relation: $y=\arccos x$.
3. How would you limit the range of the $\operatorname{arcos} x$ to create the function $g(x)=\operatorname{Cos}^{-1}(x)$?
\qquad
4. Graph $y 1=\cos (x)$ and $y 2=\operatorname{Cos}^{-1}(x)$ on your calculator to confirm your prediction.

5. If $f(x)=\cos (x)$ graphs (angle, ratio), then $f^{-1}(x)$ graphs (\qquad ,
6. Evaluate $\cos (\pi / 3)=$ \qquad $\cos (5 \pi / 3)=$ \qquad $\operatorname{Cos}^{-1}(1 / 2)=$ \qquad and $\operatorname{arcos}(1 / 2)$.
III. 1. Sketch a good graph of $y=\tan (x)$.
2. Now sketch the graph of the inverse relation arctan in a light color.
3. What cycle would you predict to be the graph of $f(x)=\operatorname{Tan}^{-1}(x)$? Check your prediction with your calculator and graph that in a darker color.
4. Domain of $y=\tan (x)$. \qquad
Range of $y=\tan (x)$. \qquad
Domain of $y=\arctan (x)$. \qquad

Range of $y=\arctan (x)$. \qquad
Domain of $y=\operatorname{Tan}^{-1}(x)$. \qquad
Range of $y=\operatorname{Tan}^{-1}(x)$. \qquad
IV. Evaluate the following:

1. $\operatorname{Sin}^{-1}(-1 / 2)=$ \qquad $\operatorname{Cos}^{-1}(-1 / 2)=$ \qquad $\operatorname{Tan}^{-1}(-1)=$ \qquad

Inverses of Trig Functions
I. On the graph to the right, sketch a fairly accurate graph of $y=\sin x$.

1. Describe the relationship between a graph and its inverse.

It is reflected over the line $y=x$.
2. Describe the relationship between specific points on a graph and points on its inverse.
The x and y values are switched.

Name \qquad

3. Use this information to write at least 6 points on a graph of the inverse of your sine function.
4. Plot the points from problem \#3 and connect them to form a smooth inverse graph.
5. Will this inverse be a function? Why or why not?
No. Infinitely many angles have the same sine value.

One convention is to call this relation $y=\arcsin x$. It's domain is $-1 \leq x \leq 1$ and its range is all reals. The relation $y=\arcsin x$ has many values when $x=\frac{1}{2}$. List at least three .
6. If you wanted to create an inverse function for the sine of x, you would have to limit the range of the arcsine relation without limiting the domain. How would you limit the range of the arcsine relation to create a function?

$$
-\pi / 2<y<\pi / 2
$$

7. Graph $f(x)=\sin (x)$ and $f(x)=\sin ^{-1}(x)$ on your calculator with a Zoom Decimal window. Does $y=\sin ^{-1}(x)$ appear to have the same range as your limits?

Check by finding $\sin ^{-1}(-1) \quad-\pi / 2$ and $\sin ^{-1}(1)$. \qquad and then, in another color, graph $y=\sin ^{-1}(x)$ on the graph above. Although our text does not do this, my convention will be to use $f(x)=\operatorname{Sin}^{-1}(x)$ or $f(x)=\operatorname{Arcsin}(x)$ to denote the function.
II. 1. Graph $y=\cos x$ to the right.
2. Graph the inverse relation: $y=\arccos x$.
3. How would you limit the range of the arcos x to create the function $g(x)=\operatorname{Cos}^{-1}(x)$?
\qquad
4. Graph $y 1=\cos (x)$ and $y 2=\operatorname{Cos}^{-1}(x)$ on your calculator to confirm your prediction.

5. If $f(x)=\cos (x)$ graphs (angle, ratio), then $f^{-1}(x)$ graphs (ratio, _angle)
6. Evaluate $\cos (\pi / 3)=_1 / 2$

If $k \in I$
$\cos (5 \pi / 3)=\ldots 1 / 2, \cos ^{-1}(1 / 2)=\ldots \pi / 3$ and $\operatorname{arcos}(1 / 2) . \pi / 3+2 \pi k$ or $5 \pi / 3+2 \pi k$
III. 1. Sketch a good graph of $y=\tan (x)$.
2. Now sketch the graph of the inverse relation arctan in a light color.
3. What cycle would you predict to be the graph of $f(x)=\operatorname{Tan}^{-1}(x)$? Check your prediction with your calculator and graph that in a darker color.
4. Domain of $y=\tan (x)$. $\quad x \neq \pi / 2+\pi k$ __

Range of $y=\tan (x)$._All Reals___
Domain of $y=\arctan (x)$. _All Reals

Range of $y=\arctan (x) . \quad x \neq \pi / 2+\pi k$
Domain of $y=\operatorname{Tan}^{-1}(x)$._ All Reals____
Range of $y=\operatorname{Tan}^{-1}(x)$. $-\pi / 2<y<\pi / 2$ _
IV. Evaluate the following:

1. $\operatorname{Sin}^{-1}(-1 / 2)=\ldots-\pi / 6 \ldots \operatorname{Cos}^{-1}(-1 / 2)=\ldots 2 \pi / 3 \quad \operatorname{Tan}^{-1}(-1)=\ldots \pi / 4 \ldots$

Inverses of Trig Functions Exercises

Name \qquad
Period \qquad

For the first 4 problems, sketch both graphs on the same set of axes. Label at least 3 points on each graph (endpoints if possible). Use your own paper.

1. $y 1(x)=\operatorname{Cos}^{-1}(x)$ and $y 2(x)=3 \operatorname{Cos}^{-1}(x)$
2. $y 1=\operatorname{Sin}^{-1}(x)$ and $y 2=\operatorname{Sin}^{-1}(3 x)$
3. $f(x)=\operatorname{Tan}^{-1}(x)$ and $g(x)=\pi+\operatorname{Tan}^{-1}(x)$
4. $y=\operatorname{Cos}^{-1}(x)$ and $y=\operatorname{Cos}^{-1}(x-2)$

Sketch each of the following without a calculator. Check your graph with one.
5. $y=\frac{\pi}{3}+\frac{2}{3} \sin ^{-1}(x-1)$
6. $y=4 \operatorname{Cos}^{-1}\left(\frac{1}{2}(x-1)\right)$
7. $y=\pi+2 \operatorname{Tan}^{-1}(x-3)$
8. $y=\frac{\pi}{2}-\sin ^{-1}(x)$
9. $y=2 \pi+3 \operatorname{Cos}^{-1}\left(\frac{1}{3}(x+2)\right)$
10. $y=5 \operatorname{Tan}^{-1}(2(x-1))$

Find the exact value(s) of each of the following:

1. $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
2. $\operatorname{Sin}^{-1}\left(\frac{-\sqrt{3}}{2}\right)$
3. $\arcsin \left(\frac{\sqrt{3}}{2}\right)$
4. $\arcsin \left(\frac{-\sqrt{3}}{2}\right)$
5. $\operatorname{Sin}^{-1}\left(\frac{\sqrt{2}}{2}\right)$
6. $\operatorname{Sin}^{-1}\left(\frac{-\sqrt{2}}{2}\right)$
7. $\arcsin \left(\frac{\sqrt{2}}{2}\right)$
8. $\arcsin \left(\frac{-\sqrt{2}}{2}\right)$
9. $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
10. $\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)$
11. $\arccos \left(\frac{\sqrt{3}}{2}\right)$
12. $\arccos \left(\frac{-\sqrt{3}}{2}\right)$
13. $\operatorname{Cos}^{-1}\left(\frac{\sqrt{2}}{2}\right)$
14. $\arccos \left(\frac{\sqrt{2}}{2}\right)$
15. $\sin ^{-1}\left(\cos \frac{\pi}{2}\right)$
16. $\sin \left(\arcsin \left(\frac{\sqrt{3}}{2}\right)\right)$
17. $\operatorname{Cos}^{-1}\left(\frac{-\sqrt{2}}{2}\right)$
18. $\arccos \left(\frac{-\sqrt{2}}{2}\right)$
19. $\sin \left(\arccos \left(\frac{3}{5}\right)\right)$
20. $\cos \left(\sin ^{-1}\left(\frac{-5}{13}\right)\right)$
21. $\cos \left(\sin ^{-1}\left(\frac{\sqrt{5}}{7}\right)\right)$
22. $\tan \left(\operatorname{Cos}^{-1}\left(\frac{-8}{17}\right)\right)$
23. $\cos \left(\operatorname{Tan}^{-1}\left(\frac{-4}{3}\right)\right)$
24. $\tan \left(\operatorname{Cos}^{-1}(x)\right)$
25. $\cos \left(\operatorname{Tan}^{-1}(x)\right)$
26. $\sin ^{-1}\left(\cos \left(\frac{2 \pi}{3}\right)\right)$
27. $\cos \left(\operatorname{Cos}^{-1}\left(\frac{-\sqrt{3}}{2}\right)\right)$

Inverses of Trig Functions Exercises

Name \qquad
Period \qquad Date

For the first 4 problems, sketch both graphs on the same set of axes. Label at least 3 points on each graph (endpoints if possible). Use your own paper.

1. $y 1(x)=\operatorname{Cos}^{-1}(x)$ and $y 2(x)=3 \operatorname{Cos}^{-1}(x) y 1:\{(1,0),(0, \pi / 2),(-1, \pi)\}$ y2: $\{(1,0),(0,3 \pi / 2),(-1,3 \pi)\}$
2. $y 1=\operatorname{Sin}^{-1}(x)$ and $y 2=\operatorname{Sin}^{-1}(3 x)$ y1: $\{(-1,-\pi / 2),(0,0),(1, \pi / 2)\}$ y2: $\{(-1 / 3,-\pi / 2),(0,0),(1 / 3, \pi / 2)\}$
3. $f(x)=\operatorname{Tan}^{-1}(x)$ and $g(x)=\pi+\operatorname{Tan}^{-1}(x) f(x):\{(0,0),(1, \pi / 4),(-1,-\pi / 4)\} g(x):\{(0, \pi),(1,5 \pi / 4),(-1,3 \pi / 4)\}$
4. $y=\operatorname{Cos}^{-1}(x)$ and $y=\operatorname{Cos}^{-1}(x-2) \quad y 1:\{(1,0),(0, \pi / 2),(-1, \pi)\} \quad y 2:\{(3,0),(2,3 \pi / 2),(1,3 \pi)\}$

Sketch each of the following without a calculator. Check your graph with one.
5. $y=\frac{\pi}{3}+\frac{2}{3} \sin ^{-1}(x-1)$ Points: $\left\{(0,0),\left(1, \frac{\pi}{3}\right),\left(2, \frac{2 \pi}{3}\right)\right\}$

6. $y=4 \operatorname{Cos}^{-1}\left(\frac{1}{2}(x-1)\right)$ Points: $\quad\{(3,0),(1,2 \pi),(-1,4 \pi)\}$

7. $y=\pi+2 \operatorname{Tan}^{-1}(x-3)$ Points: $\left\{\left(4, \frac{3 \pi}{2}\right),(3, \pi),\left(2, \frac{\pi}{2}\right)\right\}$

8. $y=\frac{\pi}{2}-\operatorname{Sin}^{-1}(x)$ Points: $\left\{(1,0),\left(0, \frac{\pi}{2}\right),(-1, \pi)\right\} \xrightarrow{\uparrow}$ (This is a $y=\cos ^{-1}(x)$.)
9. $y=2 \pi+3 \operatorname{Cos}^{-1}\left(\frac{1}{3}(x+2)\right)$ Points: $\left\{(1,2 \pi),\left(-2, \frac{7 \pi}{2}\right),(-5,5 \pi)\right\}$

10. $y=5 \operatorname{Tan}^{-1}(2(x-1))$ Points: $\left\{(1,0),\left(\frac{3}{2}, \frac{5 \pi}{4}\right),\left(\frac{1}{2}, \frac{-5 \pi}{4}\right)\right\}$

Find the exact value of each of the following:

1. $\operatorname{Sin}^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$
2. $\operatorname{Sin}^{-1}\left(\frac{-\sqrt{3}}{2}\right)=\frac{-\pi}{3}$
3. $\arcsin \left(\frac{\sqrt{3}}{2}\right)=\left\{\frac{\pi}{3}+2 \pi \mathrm{k}, \frac{2 \pi}{3}+2 \pi \mathrm{k}\right\}$
4. $\arcsin \left(\frac{-\sqrt{3}}{2}\right)=\left\{\frac{-\pi}{3}+2 \pi \mathrm{k}, \frac{4 \pi}{3}+2 \pi \mathrm{k}\right\}$
5. $\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}$
6. $\sin ^{-1}\left(\frac{-\sqrt{2}}{2}\right)=\frac{-\pi}{4}$
7. $\arcsin \left(\frac{\sqrt{2}}{2}\right)=\left\{\frac{\pi}{4}+2 \pi \mathrm{k}, \frac{3 \pi}{4}+2 \pi \mathrm{k}\right\}$
8. $\arcsin \left(\frac{-\sqrt{2}}{2}\right)=\left\{\frac{-\pi}{4}+2 \pi \mathrm{k}, \frac{5 \pi}{4}+2 \pi \mathrm{k}\right\}$
9. $\operatorname{Cos}^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}$
10. $\arccos \left(\frac{\sqrt{3}}{2}\right)=\left\{\frac{\pi}{6}+2 \pi \mathrm{k}, \frac{-\pi}{6}+2 \pi \mathrm{k}\right\}$
11. $\operatorname{Cos}^{-1}\left(\frac{-\sqrt{3}}{2}\right)=\frac{5 \pi}{6}$
12. $\operatorname{Cos}^{-1}\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}$
13. $\arccos \left(\frac{\sqrt{2}}{2}\right)=\left\{\frac{\pi}{4}+2 \pi \mathrm{k}, \frac{-\pi}{4}+2 \pi \mathrm{k}\right\}$
14. $\arccos \left(\frac{-\sqrt{3}}{2}\right)=\left\{\frac{5 \pi}{6}+2 \pi \mathrm{k}, \frac{-5 \pi}{6}+2 \pi \mathrm{k}\right\}$
15. $\operatorname{Cos}^{-1}\left(\frac{-\sqrt{2}}{2}\right)=\frac{3 \pi}{4}$
16. $\sin ^{-1}\left(\cos \frac{\pi}{2}\right)=0$
17. $\sin \left(\arcsin \left(\frac{\sqrt{3}}{2}\right)\right)=\frac{\sqrt{3}}{2}$
18. $\sin \left(\arccos \left(\frac{3}{5}\right)\right)=\frac{4}{5}$
19. $\cos \left(\sin ^{-1}\left(\frac{\sqrt{5}}{7}\right)\right)=\frac{\sqrt{44}}{7}$
20. $\cos \left(\operatorname{Tan}^{-1}\left(\frac{-4}{3}\right)\right)=\frac{3}{5}$
21. $\tan \left(\cos ^{-1}(x)\right)=\frac{\sqrt{1-x^{2}}}{x}$
22. $\cos \left(\operatorname{Tan}^{-1}(x)\right)=\frac{1}{\sqrt{1+x^{2}}}$
23. $\arccos \left(\frac{-\sqrt{2}}{2}\right)=\left\{\frac{3 \pi}{4}+2 \pi \mathrm{k}, \frac{-3 \pi}{4}+2 \pi \mathrm{k}\right\}$
24. $\sin ^{-1}\left(\cos \left(\frac{2 \pi}{3}\right)\right)=\frac{-\pi}{6}$
25. $\cos \left(\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)\right)=\frac{-\sqrt{3}}{2}$
26. $\cos \left(\sin ^{-1}\left(\frac{-5}{13}\right)\right)=\frac{12}{13}$
27. $\tan \left(\operatorname{Cos}^{-1}\left(\frac{-8}{17}\right)\right)=\frac{-15}{8}=-\frac{15}{8}=\frac{15}{-8}$
28. $\tan \left(\sin ^{-1}\left(\frac{7}{25}\right)\right)=\frac{7}{24}$
29. $\sin \left(\operatorname{Cos}^{-1}(\theta)\right)=\sqrt{1-\theta^{2}}$
30. $\cos \left(\sin ^{-1}(\theta)\right)=\sqrt{1-\theta^{2}}$
