Worksheet
Harmonic and Fibonacci

Name
Period \qquad

A harmonic sequence is a sequence in which all of the terms are reciprocals of the terms of an arithmetic sequence.

Ex. \#1. Since $2,4,6,8, \ldots$ is arithmetic, $1 / 2,1 / 4,1 / 6,1 / 8$, is harmonic.
Ex. \#2. Since $a_{n}=4 n-7$ is arithmetic, $h_{n}=1 /(4 n-7)$ is harmonic.
To insert k harmonic means between numbers a and b, insert k arithmetic means between $1 / a$ and $1 / b$, then write the reciprocals of those means.

Ex. Insert 2 harmonic means between 3 and 10.

Consider the arithmetic sequence: $1 / 3$, \qquad , \qquad 1/10

Their common difference is $(1 / 10-1 / 3) /(4-1)=-7 / 90$, so the arithmetic sequence is: $1 / 3,23 / 90,16 / 90,1 / 10$ and that means the harmonic means are 90/23 and 90/16.

Exercises:

1. Insert 3 harmonic means between $1 / 3$ and $1 / 9$.

If the harmonic sequence is $1 / 3$, \qquad , —, \qquad 1/9, then the arithmetic sequence is 3, \qquad , ——, \qquad 9. The common difference for this arithmetic sequence is (9$3) /(5-1)=6 / 4=3 / 2$, so the arithmetic sequence is $3,9 / 2,6,15 / 2,9$. A sequence of the reciprocals of these terms would be $1 / 3,2 / 9,1 / 6,2 / 15,1 / 9$ which is harmonic. So the harmonic means are 2/9, 1/6, 2/15
2. Insert 5 harmonic means between $1 / 6$ and $1 / 12$.

We will insert 5 arithmetic means between 6 and 12 . \qquad , \qquad 12. The common difference (slope) is $(12-6) /(7-1)=6 / 6=1$. So the arithmetic sequence is 6 , $7,8,9,10,11,12$ and the harmonic sequence is $1 / 6,1 / 7,1 / 8,1 / 9,1 / 10,1 / 11,1 / 12$ so the means are $1 / 7,1 / 8,1 / 9,1 / 10,1 / 11$.
3. Insert 2 harmonic means between 3 and 7 .

Insert 2 arithmetic means between $1 / 3$ and $1 / 7.1 / 3, \ldots, \ldots, 1 / 7$. The common difference (slope) is $(1 / 7-1 / 3) /(4-1)=(-4 / 21) / 3=-4 / 63$. So the arithmetic sequence is $1 / 3,17 / 63,13 / 63,1 / 7$ and the harmonic sequence is $3,63 / 17,63 / 13,7$ so the means are 63/17, 63/13.
4. Insert 3 geometric means between 2 and 9. If 2, \qquad
\qquad 9 form a geometric sequence, $9=2 r^{3}$, so $r=\sqrt[3]{9 / 2}$. Means will be $2 \sqrt[3]{9 / 2}$, and $2(\sqrt[3]{9 / 2})^{2}$.
5. Prove that $\{2,3,6\}$ are terms of a harmonic sequence.

If 2,3 , and 6 form a harmonic sequence, then $1 / 2,1 / 3,1 / 6$ should be arithmetic. This means $1 / 3-1 / 2$ should equal $1 / 6-1 / 3$. Well, $1 / 3-1 / 2=-1 / 6$ and $1 / 6-1 / 3=-1 / 6$, so they are equal Therefore 2,3,6 are harmonic. (Another way to show this is to show that $\{2,3,6\}$ can also be written as $\left\{\frac{6}{3}, \frac{6}{2}, \frac{6}{1}\right\}$, and this can be written as $6 /(4-n)$ which is the reciprocal of an arithmetic sequence (4-n)/6.
6. Given the numbers, 4 and 8 :
A) Insert an arithmetic mean between the two. 6
B) Insert a geometric mean between the two. $4 \sqrt{2}$
C) Insert a harmonic mean between the two. 16/3
D) Write these in order from lowest to highest. $16 / 3,4 \sqrt{2}, 6$
7. Given the positive numbers, a and b, write the arithmetic mean, the geometric mean and the harmonic mean and decide if the order (from lowest to highest) sill applies and why it does.
Arithmetic mean $=\frac{a+b}{2}$, Geometric mean $=\sqrt{a \cdot b}$ Harmonic mean $=\frac{2 a b}{a+b}$
The order still works...
The Fibonacci sequence is the sequence of numbers, $1,1,2,3,5,8,13,21, \ldots$
What is the next term of the sequence? 34
Write a recursive formula for this sequence. $f_{n}=f_{n-1}+f_{n-2}$

1. Take any three sequential Fibonacci numbers. Multiply the outer two and square the middle one. Try this activity with 3 different sequential Fibonacci numbers. What do you notice? There is always a difference of 1 .
2. Take any four sequential Fibonacci numbers. Multiply the outer two and multiply the inner two. Try this again with 4 different sequential Fibonacci numbers. What do you notice? The difference is always 1 .
3. Create a new sequence by finding f_{n} / f_{n+1}. (I use lists...) Does this sequence converge or diverge? If it converges, what number appears to be the limit?

$$
\text { It converges to } \varphi=\frac{1+\sqrt{5}}{2}=1.6180339887 \ldots
$$

4. If n is a prime number, what appears to be true of f_{n} ? f_{n} is prime.
5. Find two consecutive Fibonacci numbers, f_{n} and f_{n+1}. Then locate $f_{2 n+1}$. What do you notice about these numbers? $f_{2 n+1}=f_{n}^{2}+f_{n+1}^{2}$.
6. Classify the following sequences as arithmetic, geometric, harmonic, Fibonacci, or other. Then write the $\mathrm{n}^{\text {th }}$ term (explicitly if possible).
A) $1, \mathrm{i},-1,-\mathrm{i}, .$. Geometric, $t_{n}=i^{n-1}$
B) $\log 2, \log 4, \log 8, \log 16, \ldots$ Arithmetic, $t_{n}=2 \log 2\left(\right.$ or $\left.\log 2^{n}\right)$
C) $4 / 3,4 / 5,4 / 7,4 / 9, \ldots$ Harmonic, $t_{n}=4 /(2 n+1)$
D) $1,1,2,3,5,8, \ldots$. Fibonacci, $t_{n}=t_{n-1}+t_{n-2}$
E) $12,6,4,3, \ldots$ Harmonic, $t_{n}=12 / n$
F) $3-\mathrm{i}, 3,3+\mathrm{i}, 3+2 \mathrm{i}, \ldots$ Arithmetic, $t_{n}=3-2 i+n \cdot i$
G) $\sin 0, \sin \pi, \sin 2 \pi, \sin 3 \pi, \sin 4 \pi, \ldots$ Arithmetic (Constant) $t_{n}=0$
H) $\cos 0, \cos \pi, \cos 2 \pi, \cos 3 \pi, \cos 4 \pi, \ldots$ Geometric, $t_{n}=(-1)^{n-1}$
I) $\sin 0, \sin 90^{\circ}, \sin 180^{\circ}, \sin 270^{\circ}, \sin 360^{\circ}, \ldots$ Other $t_{n}=\sin \left(90^{\circ} \cdot n\right)$
