Gauss-Jordan Elimination 
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We know that when 2 planes intersect, their intersection is a line.  But if Ax + By + Cz = D is 

the equation of a plane, how can we write the equation of a line in 3-space?

One way is to choose one variable and write all the other variables in terms of that one.  
(We already do that in 2-space because we can write the equation of y = 3x + 5 as all points in the form (x, 3x + 5). )  So let’s try that in 3-space.  
Consider the 2 planes x + y + z = 12 and 3x + y – z = 6.  
If we add these two equations, we get 4x + 2y = 18 or 2x + y = 18.  
Since it is easy to solve this equation for y, we can put all the coordinates in terms of x.  
We can let the x value be x.  
The y value will be y = 18 – 2x .

By substitution into the first equation we get x + 18 – 2x + z = 12 ( -x + z = -6 ( z = x – 6.  

So we can write our line as the ordered triple (x, 18 – 2x, x – 6).  

Finding points on this line is now a much easier task!
An algorithm is a set of rules for solving a problem in a finite number of steps.  Another algorithm for solving a system of equations is called Gauss-Jordan elimination.  Although it is cumbersome for solving small systems, it works well for larger systems.  
Consider the system  x ( 2y + 3z = 9            

First write the system as a
                                 (x + 3y = (4


coefficient matrix augmented 
                                   2x ( 5y + 5z = 17

with the constants:
So…
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  Add the top two equations and we get
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[image: image3.wmf] Multiply the top equation by  2 

and add it to the last equation.
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[image: image5.wmf](We want the coefficient matrix to be 

the identity matrix.  Why?)


Now that the first column is finished, we use the second row for the next column.
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[image: image7.wmf]So multiply the middle row by 2 and 

add it to the top row.
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   Add the bottom two rows.
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  Divide the last row by 2 and we now have z.
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 Multiply the last row by (9 and add it to the top.
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 What happened here?
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  Do you see how the matrix tells us the solution?


Gauss-Jordan can also be used to find inverses.  If we wanted to find the inverse of 
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, we could set up the augmented matrix:  
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 .  Why does this work?

1.  Solve these using Gauss Jordan elimination.

A)  x + y + z = 8


B)  x + 3y ( z = 11


C)  x + y = (2
    2x + y ( 3z = (5


    2x + 2y ( 5z = 6

     
     y + z = 2
    2x ( 3y + 2z = 11


    (x + y + 2z = 5

               x + z = 6
2.  Find these inverses:
A)  
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B)  
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C) 
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