Accelerated Precalculus Bearings Practice

Name \qquad
Period \qquad

Sketch each of the following and find the magnitude and bearing of each resultant.

1. A plane flies $\mathrm{N} 38^{\circ} \mathrm{E}$ for 300 miles, develops engine trouble and changes course to $S 71^{\circ} \mathrm{E}$ for 30 miles to land at the nearest airport.
2. A ship travels 1500 km heading 36° west of south, then changes course to travel 4000 km on a heading of 78° west of south.
3. On a treasure hunt, Sally walks 30 ft on a bearing of $\mathrm{N} 56^{\circ} \mathrm{W}$, then turns and walks $\mathrm{N} 10^{\circ} \mathrm{E}$ for another 45 ft .
4. A jet flies 600 km heading 65° east of north, has a medical emergency and changes course to find an airport $40 \mathrm{~km} 10^{\circ}$ west of south.

Accelerated Precalculus

 Bearings PracticeName \qquad
Period \qquad
Sketch each of the following and find the magnitude and bearing of each resultant.

1. A plane flies $\mathrm{N} 38^{\circ} \mathrm{E}$ for 300 miles, develops engine trouble and changes course to $S 71^{\circ} \mathrm{E}$ for 30 miles to land at the nearest airport.
2. A ship travels 1500 km heading 36° west of south, then changes course to travel 4000 km on a heading of 78° west of south.
3. On a treasure hunt, Sally walks 30 ft on a bearing of $\mathrm{N} 56^{\circ} \mathrm{W}$, then turns and walks $\mathrm{N} 10^{\circ} \mathrm{E}$ for another 45 ft .
4. A jet flies 600 km heading 65° east of north, has a medical emergency and changes course to find an airport $40 \mathrm{~km} 10^{\circ}$ west of south.

Accelerated Precalculus Bearings Practice

Name \qquad
Period \qquad Date \qquad

Sketch each of the following and find the magnitude and bearing of each resultant.

1. A plane flies $\mathrm{N} 38^{\circ} \mathrm{E}$ for 300 miles, develops engine trouble and changes course to $S 71^{\circ} \mathrm{E}$ for 30 miles to land at the nearest airport. The initial path is in green and the next is in purple. The resultant is in orange.

The bearing is sometimes more of a challenge because you must stop and find the angle made from the north or south and the resultant. This usually involves adding or subtracting angles. In this case, we need $m \angle N A K$, which is $38^{\circ}+\mathrm{m} \angle B A K$. We find $\mathrm{m} \angle B A K$ using the law of sines: $r / \sin 109^{\circ}=30 / \sin \angle B A K$. So $m \angle B A K=5.232^{\circ}$. (I used saved values for r.) So the bearing is $\mathrm{N} 43.232^{\circ} \mathrm{E}$.
2. A ship travels 1500 km heading 36° west of south, then changes course to travel 4000 km on a heading of 78° west of south.

3. On a treasure hunt, Sally walks 30 ft on a bearing of $\mathrm{N} 56^{\circ} \mathrm{W}$, then turns and walks $\mathrm{N} 10^{\circ} \mathrm{E}$ for another 45 ft .

Notice that at $A, m \angle N A B=56^{\circ}$. Since $\| \rightarrow$ alt. int \angle \cong, at $B, m \angle A B S=56^{\circ}$. Also at $B, m \angle N B K=10^{\circ}$, so $m \angle A B K=180^{\circ}-m \angle A B S-m \angle N B K=180^{\circ}-56^{\circ}-10^{\circ}=$ 114°. Law of cosines says $r^{2}=30^{2}+45^{2}-2 \cdot 30 \cdot 45 \cos$ 114°, so $r=63.43 \mathrm{ft}$.
In this case, we need $m \angle N A K$, which is $56^{\circ}-m \angle B A K$. We find $\mathrm{m} \angle \mathrm{BAK}$ using the law of sines: $\mathrm{r} / \sin 114^{\circ}=$ $45 / \sin \angle B A K$. So $m \angle B A K=40.40^{\circ}$. So the bearing is N15.60 ${ }^{\circ} \mathrm{W}$.
4. A jet flies 600 km heading 65° east of north, has a medical emergency and changes course to find an airport $40 \mathrm{~km} 10^{\circ}$ west of south.

