Acc.Precalculus

Name <u>Solutions</u>.

A Look at Successive Differences

Period _____Date____

Consider the quadratic function: $f(x) = 2x^2 - 5x + 7$ Let's make a table of f(x) for $x \in \{1, 2, 3, 4, 5\}$

table	of f(x)	for $\boldsymbol{x} \in \{$	1, 2, 3, 4	4,5}.		
	×	1	2	3	4	5
	f(x)	4	5	10	19	32

Now let's find the difference between each successive term - successive differences

×		1		1 2		2	3		4		5	
f(x)		4		5	1	0	1	9	32	2		
Successiv Differen	ve ces	1			5		9	;	13			

What pattern do you see? The differences differ by a constant 4.

Now let's find the difference between the differences, and then the differences between those differences:

×	1		1 2		3		4		5	
f(x)		4		5		10		19		2
Successiv Differen	ie Ces	1			5		9	1	3	
Second Differen	ces			4		4	•	4		-

If the first differences are **constant**, then the function is <u>linear</u>.

But when the function is quadratic, what is true? <u>Second differences are constant.</u>

What would you expect to be true if the third differences are constant?

The function should be cubic (3^{rd} degree) .

Check out your hypothesis with an example.

My f(x) =	×	1	2		3	4		5	
<u>x³-5x²+6x-2</u>	f(x)	0	-2	-	2	6		28	
	Successiv Differend Second	ve ces –	2	0	, 0	8	22	2	
	Differe	ences	4		0	1	4		N
	Third	1		6		6			<u>Continued</u> on the back
	Diffe	rences		U		0			

Let's look at this pattern in general for $f(x) = ax^2 + bx + c$. Complete the table...

×	1			2	3		4		5	
f(x)	a+b+c		4a-	+2b+c	9a+3b+c		16a+4b+c		25a+5b+c	
Successive Differences		30	ı+b	5 a	+b	7 a ·	+b	9 a	+b	
Second	Second		20		20		20			_
Differences		24		Lu		24				
Third			0		0					
Differend	ces			U		U				

This means if our function (or sequence) is **quadratic**, we can use this information to write its equation or general term. Let's try it with the following sequence: $\{-11, -12, -9, -2, 9\}$

n	1		2		3		4	5	
a _n	-11	-	-12	-	9		-2	9	
Successive Differences		-1	1 3		7		1	11	
Second Differences		4		4			4		
Third Differences		0		0					

So 2a = 4, meaning a = 2. And 3a + b = -1, so b = -7. And since a + b + c = -11, c = -6.

This means the explicit form for our sequence is: $a_n = \frac{2n^2 - 7n - 6}{2n^2 - 7n - 6}$

Now, try to write equations for these sequences:

- 1.) 4, 10, 18, 28, 40, ...
- 2.) 7, 8, 11, 16, 23, ...
- 3.) -3 , -11 , -25 , -45 , -71 , ...
- 4.) -2, 4, 10, 16, 22, ...
- 5.) -7, -3, 3, 11, 21, ...
- 6.) 12, 15, 16, 15, 12, ...

 $a_{n} = n^{2} + 3n$ $a_{n} = n^{2} - 2n + 8$ $a_{n} = n^{2} - 2n + 8$ $a_{n} = n^{2} - 2n + 8$ $a_{n} = 6n - 8$ $a_{n} = n^{2} + n - 9$ $a_{n} = -n^{2} + 6n + 7$