Accelerated Precalculus Projections

Name_____ Period____Date_____

- 1. $\overrightarrow{If} v = \langle 3, 6 \rangle$ and $u = \langle 2, 1 \rangle$,
 - A) Find the scalar projection of \vec{u} onto \vec{v} .
 - B) Find the vector projection of \vec{u} onto \vec{v} .
 - C) Find the orthogonal component of this vector projection.
 - D) Find the scalar projection of \overrightarrow{v} onto \overrightarrow{u} .
 - E) Find the vector projection of \vec{v} onto \vec{u} .
 - F) Find the orthogonal component of this vector projection .
- 2. If $\vec{v} = \langle -2, 5 \rangle$ and $\vec{u} = \langle 3, -4 \rangle$,
 - A) Find the scalar projection of \vec{u} onto \vec{v} .
 - B) Find the vector projection of \vec{u} onto \vec{v} .
 - C) Find the orthogonal component of this vector projection.
 - D) Find the scalar projection of \vec{v} onto \vec{u} .
 - E) Find the vector projection of \vec{v} onto \vec{u} .
 - F) Find the orthogonal component of this vector projection .

3. If $|\vec{a}| = 24$ at a 60° standard position angle, and $\vec{b} = 5\vec{i} + 2\vec{j}$, write the vector projection of \vec{a} onto \vec{b} .

- 4. If $\vec{v} = \langle 0, 5 \rangle$ and $\vec{u} = \langle -8, 6 \rangle$,
 - A) Find the scalar projection of \vec{u} onto \vec{v} .
 - B) Find the vector projection of \vec{u} onto \vec{v} .
 - C) Find the orthogonal component of this vector projection.
 - D) Find the scalar projection of \vec{v} onto \vec{u} .
 - E) Find the vector projection of \vec{v} onto \vec{u} .
 - F) Find the orthogonal component of this vector projection.
- 5. If $\vec{v} = \langle 7, -4 \rangle$ and $\vec{u} = \langle -2, 1 \rangle$,
 - A) Find the scalar projection of \overrightarrow{u} onto \overrightarrow{v} .
 - B) Find the vector projection of \vec{u} onto \vec{v} .
 - C) Find the orthogonal component of this vector projection.
 - D) Find the scalar projection of \overrightarrow{v} onto \overrightarrow{u} .
 - E) Find the vector projection of \vec{v} onto \vec{u} .
 - F) Find the orthogonal component of this vector projection.

6. If $|\overrightarrow{a}| = 30$ at a 120° standard position angle, and $\overrightarrow{b} = 3\overrightarrow{i} + 4\overrightarrow{j}$, write the vector projection of \overrightarrow{a} onto \overrightarrow{b} and the orthogonal component of that projection.

Accelerated Precalculus Projections

Name	
Period	Date

If $\overrightarrow{v} = \langle 3, 6 \rangle$ and $\overrightarrow{u} = \langle 2, 1 \rangle$, A) Find the scalar projection of \vec{u} onto \vec{v} . $\frac{4\sqrt{5}}{5}$ B) Find the vector projection of \vec{u} onto \vec{v} . $\frac{4}{5}\vec{i} + \frac{8}{5}\vec{j}$ C) Find the orthogonal component of this vector projection. $\frac{6}{5}\vec{i} - \frac{3}{5}\vec{j}$ D) Find the scalar projection of \vec{v} onto \vec{u} . $\frac{12\sqrt{5}}{5}$ E) Find the vector projection of \vec{v} onto \vec{u} . $\frac{24}{5}\vec{i} + \frac{12}{5}\vec{j}$ F) Find the orthogonal component of this vector projection. $\frac{-9}{5}\vec{i} + \frac{18}{5}\vec{j}$ 2. If $\vec{v} = \langle -2, 5 \rangle$ and $\vec{u} = \langle 3, -4 \rangle$, A) Find the scalar projection of \vec{u} onto \vec{v} . $\frac{-26}{\sqrt{29}}$ B) Find the vector projection of \vec{u} onto \vec{v} . $\frac{52}{29}\vec{i} - \frac{130}{29}\vec{j}$ C) Find the orthogonal component of this vector projection. $\frac{35}{29}\vec{i} + \frac{14}{29}\vec{j}$ D) Find the scalar projection of \overrightarrow{v} onto \overrightarrow{u} . $\frac{-26}{5}$ E) Find the vector projection of \vec{v} onto \vec{u} . $\frac{-78}{25}\vec{i} + \frac{104}{25}\vec{j}$ F) Find the orthogonal component of this vector projection. $\frac{28}{25}\vec{i} + \frac{21}{25}\vec{j}$ 3. If $|\vec{a}| = 24$ at a 60° standard position angle, and $\vec{b} = 5\vec{i} + 2\vec{j}$, write the vector projection of \vec{a} onto \vec{b} . $\langle 17.51, 7.0048 \rangle$

- 4. If $\vec{v} = \langle 0, 5 \rangle$ and $\vec{u} = \langle -8, 6 \rangle$,
 - A) Find the scalar projection of \vec{u} onto \vec{v} . 6
 - B) Find the vector projection of \vec{u} onto \vec{v} . $\langle 0, 6 \rangle$
 - C) Find the orthogonal component of this vector projection. $\langle -8, 0 \rangle$
 - D) Find the scalar projection of \vec{v} onto \vec{u} . 3
 - E) Find the vector projection of \vec{v} onto \vec{u} . $\langle -2.4, 1.8 \rangle$
 - F) Find the orthogonal component of this vector projection. $\langle 2.4, 3.2 \rangle$

5. If
$$\vec{v} = \langle 7, -4 \rangle$$
 and $\vec{u} = \langle -2, 1 \rangle$,

A) Find the scalar projection of \vec{u} onto \vec{v} . $\frac{-18}{\sqrt{65}}$ B) Find the vector projection of \vec{u} onto \vec{v} . $\frac{-126}{65}\vec{i} + \frac{72}{65}\vec{j}$ C) Find the orthogonal component of this vector projection. $\frac{-4}{65}\vec{i} - \frac{7}{65}\vec{j}$ D) Find the scalar projection of \vec{v} onto \vec{u} . $\frac{-18}{\sqrt{5}}$ E) Find the vector projection of \vec{v} onto \vec{u} . $\frac{36}{5}\vec{i} - \frac{18}{5}\vec{j}$ F) Find the orthogonal component of this vector projection. $\frac{-1}{5}\vec{i} - \frac{2}{5}\vec{j}$ 6. If $|\vec{a}| = 30$ at a 120° standard position angle, and $\vec{b} = 3\vec{i} + 4\vec{j}$, write the vector projection of \vec{a} onto \vec{b} and the orthogonal component of that projection. $\langle 7.071, 9.428 \rangle$ $\langle -22.071, 16.553 \rangle$