Accelerated Precalculus
Projections

Name \qquad
Period \qquad Date \qquad

1. $\overrightarrow{\text { If }} v=\langle 3,6\rangle$ and $u=\langle 2,1\rangle$,
A) Find the scalar projection of \vec{u} onto \vec{v}.
B) Find the vector projection of \vec{u} onto \vec{v}.
C) Find the orthogonal component of this vector projection.
D) Find the scalar projection of $\overrightarrow{v o n t o ~} \vec{u}$.
E) Find the vector projection of \vec{v} onto \vec{u}.
F) Find the orthogonal component of this vector projection.
2. If $\vec{v}=\langle-2,5\rangle$ and $\vec{u}=\langle 3,-4\rangle$,
A) Find the scalar projection of \vec{u} onto \vec{v}.
B) Find the vector projection of u onto \vec{v}.
C) Find the orthogonal component of this vector projection.
D) Find the scalar projection of \vec{v} onto \vec{u}.
E) Find the vector projection of \vec{v} onto \vec{u}.
F) Find the orthogonal component of this vector projection.
3. If $|\vec{a}|=24$ at $a 60^{\circ}$ standard position angle, and $\vec{b}=\overrightarrow{5 i}+2 \vec{j}$, write the vector projection of \vec{a} onto \vec{b}.
4. If $\vec{v}=\langle 0,5\rangle$ and $\vec{u}=\langle-8,6\rangle$,
A) Find the scalar projection of \vec{u} onto \vec{v}.
B) Find the vector projection of \vec{u} onto \vec{v}.
C) Find the orthogonal component of this vector projection.
D) Find the scalar projection of \vec{v} onto \vec{u}.
E) Find the vector projection of \vec{v} onto \vec{u}.
F) Find the orthogonal component of this vector projection.
5. If $\vec{v}=\langle 7,-4\rangle$ and $\vec{u}=\langle-2,1\rangle$,
A) Find the scalar projection of \vec{u} onto \vec{v}.
B) Find the vector projection of \vec{u} onto \vec{v}.
C) Find the orthogonal component of this vector projection.
D) Find the scalar projection of \vec{v} onto \vec{u}.
E) Find the vector projection of \vec{v} onto \vec{u}.
F) Find the orthogonal component of this vector projection.
6. If $|\overrightarrow{a \mid}|=30$ at a 120° standard position angle, and $\vec{b}=3 \vec{i}+\overrightarrow{4 j}$, write the vector projection of \vec{a} onto \vec{b} and the orthogonal component of that projection.

Accelerated Precalculus
Projections

Name \qquad
Period \qquad Date \qquad

If $\vec{v}=\langle 3,6\rangle$ and $\vec{u}=\langle 2,1\rangle$,
A) Find the scalar projection of \vec{u} onto $\vec{v} \cdot \frac{4 \sqrt{5}}{5}$
B) Find the vector projection of \vec{u} onto $\vec{v} . \frac{4}{5} \vec{i}+\frac{8}{5} \vec{j}$
C) Find the orthogonal component of this vector projection. $\frac{6}{5} \vec{i}-\frac{3}{5} \vec{j}$
D) Find the scalar projection of \vec{v} onto $\vec{u} . \frac{12 \sqrt{5}}{5}$
E) Find the vector projection of \vec{v} onto $\vec{u} \cdot \frac{24}{5} \vec{i}+\frac{12}{5} \vec{j}$
F) Find the orthogonal component of this vector projection. $\frac{-9}{5} \vec{i}+\frac{18}{5} \vec{j}$
2. If $\vec{v}=\langle-2,5\rangle$ and $\vec{u}=\langle 3,-4\rangle$,
A) Find the scalar projection of \vec{u} onto $\vec{v} \cdot \frac{-26}{\sqrt{29}}$
B) Find the vector projection of \vec{u} onto $\vec{v} . \frac{52}{29} \vec{i}-\frac{130}{29} \vec{j}$
C) Find the orthogonal component of this vector projection. $\frac{35}{29} \vec{i}+\frac{14}{29} \vec{j}$
D) Find the scalar projection of \vec{v} onto $\vec{u} . \frac{-26}{5}$
E) Find the vector projection of \vec{v} onto $\vec{u} . \frac{-78}{25} \vec{i}+\frac{104}{25} \vec{j}$
F) Find the orthogonal component of this vector projection. $\frac{28}{25} \vec{i}+\frac{21}{25} \vec{j}$
3. If $|\vec{a}|=24$ at a 60° standard position angle, and $\vec{b}=\overrightarrow{5 i}+2 \vec{j}$, write the vector projection of \vec{a} onto $\vec{b} . \quad\langle 17.51,7.0048\rangle$
4. If $\vec{v}=\langle 0,5\rangle$ and $\vec{u}=\langle-8,6\rangle$,
A) Find the scalar projection of \vec{u} onto $\vec{v} . \quad 6$
B) Find the vector projection of \vec{u} onto \vec{v}. $\langle 0,6\rangle$
C) Find the orthogonal component of this vector projection. $\langle-8,0\rangle$
D) Find the scalar projection of \vec{v} onto $\vec{u} . \quad 3$
E) Find the vector projection of \vec{v} onto $\vec{u} . \quad\langle-2.4,1.8\rangle$
F) Find the orthogonal component of this vector projection. 〈2.4, 3.2〉
5. If $\vec{v}=\langle 7,-4\rangle$ and $\vec{u}=\langle-2,1\rangle$,
A) Find the scalar projection of \vec{u} onto \vec{v}. $\frac{-18}{\sqrt{65}}$
B) Find the vector projection of \vec{u} onto $\vec{v} . \quad \frac{-126}{65} \vec{i}+\frac{72}{65} \vec{j}$
C) Find the orthogonal component of this vector projection. $\frac{-4}{65} \vec{i}-\frac{7}{65} \vec{j}$
D) Find the scalar projection of \vec{v} onto \vec{u}. $\frac{-18}{\sqrt{5}}$
E) Find the vector projection of \vec{v} onto $\vec{u} . \quad \frac{36}{5} \vec{i}-\frac{18}{5} \vec{j}$
F) Find the orthogonal component of this vector projection. $\frac{-1}{5} \vec{i}-\frac{2}{5} \vec{j}$
6. If $|\overrightarrow{a \mid}|=30$ at a 120° standard position angle, and $\vec{b}=\overrightarrow{3 i}+\overrightarrow{4 j}$, write the vector projection of \vec{a} onto \vec{b} and the orthogonal component of that projection.
$\langle 7.071,9.428\rangle\langle-22.071,16.553\rangle$

